
MEMOCODE 2015 Design Contest:
Continuous Skyline Computation

Peter Milder
Department of Electrical and Computer Engineering

Stony Brook University
Stony Brook, NY 11794–2350
peter.milder@stonybrook.edu

Abstract—The skyline query operation (also called the “max-
imum vector problem”) is used to identify potentially interesting
or useful data points in large sets of multi-dimensional data.
When the data change over time (through addition and subtrac-
tion of points), this is called the “continuous skyline” query. The
2015 MEMOCODE Design Contest problem is to implement a
system to efficiently compute the continuous skyline of dynamic
data. Contestants were given one month to develop a system to
perform the skyline query, aiming to maximize performance or
cost-adjusted performance. Teams were encouraged to consider
a variety of computational targets including CPUs, FPGAs, and
GPGPUs. The two winning teams, which have been invited to
contribute papers describing their techniques, combined careful
algorithmic and implementation optimizations; both implemented
the system on multicore CPUs.

I. INTRODUCTION

Since 2007, the annual MEMOCODE design contests
have presented a variety of problems, challenging teams
from around the world to develop effective hardware/software
solutions. Previous problems have included k-nearest neigh-
bors [1], stereo matching [2], DNA sequence alignment [3],
NoC simulation [4], packet inspection [5], rectangular-to-polar
interpolation [6], sorting of encrypted data [7], and matrix-
matrix multiplication [8].

This year’s problem is to compute the continuous skyline
of dynamic multidimensional data. The skyline operation is
commonly used in applications such as data mining [9] to find
points that are Pareto optimal across many dimensions.

II. PROBLEM OVERVIEW

Skyline Computation. A common example to illustrate
the idea behind the skyline operation is to consider the choice
of a vacation hotel (as in [10]). Imagine you are choosing a
hotel for vacation on a tropical island, and you are concerned
only with each hotel’s cost and its distance to the beach. We
can visualize your options in the Figure 1.

If we consider only these two metrics (cost and distance)
we can easily identify the hotels that you may want to consider.
For example, we see that the hotel labeled “A” is both closer
to the beach and less expensive than hotel “B”. This means
that A is said to dominate B. When we compare A and C, we
see that A is better in one metric (distance) while C is better
than A in the other (cost). For this reason, neither A nor C
dominate each other. The skyline is the set of points which

Fig. 1. Example Two-Dimensional Skyline Query

are not dominated by any other [10]. Figure 1 illustrates these
points by connecting them with a solid line.

In this example, the set of data only contains two dimen-
sions (cost and distance). If a vacationer cares about other
aspects of the hotel (e.g., the hotel’s quality or amenities),
then more dimensions must be considered. We will use m to
represent the dimensionality of the data.

Definition 1: Let D represent a set of n elements
d0, . . . , dn−1, each with m dimensions. The skyline of D is
the set of all of its elements which are not dominated by any
element of the set.

Definition 2: Element da dominates element db if and only
if da is better than db in at least one dimension, and better than
or equal to db in all m dimensions. We will say that a number
x is “better” than another number y if and only if x < y.

Continuous Skyline. Our previous example assumed that
the set of data was static. However, large complex datasets
are often dynamic in nature. The continuous (or “continuous
time-interval”) skyline computation [11] is performed on data
where entries are added or removed over time.

A naive approach to this is simply to re-calculate the entire
skyline each time an element is added or removed. However,
this can be quite inefficient; if only a portion of the active data



has changed since the last computation, many of the necessary
comparisons have already been performed.

We will model time as a series of discrete timesteps, and
we will encode the dataset’s changes with an activation time a
and a deactivation time v for each of the n entries in the input
set. At time-step t, our goal is to find the skyline among all
entries in D that have activation time a ≤ t and deactivation
time v > t. The outputs of our system will be the indices (in
D) of the skyline elements, and the number of skyline entries
found per time-step.

Problem Specification. The system takes as input: a
dataset D consisting of n points in m-dimensions (where n
and m are given), and two vectors of length n that correspond
to the activation and deactivation times of each element in D.
The data elements are sorted by activation time (that is, D is
ordered from earliest to latest activation time).

For each timestep t = 0, 1, . . . , T , the system must find the
skyline across all data elements valid at time t. The system will
store the skyline indices (indices of D) in memory, as well as
the number of valid skyline points found. The maximum time-
step T is the largest deactivation time in the set; the system
may assume T is given. The timed portion of the solution must
start with all input data in main system memory, and it must
conclude with all output data in main memory.

III. FUNCTIONAL REFERENCE IMPLEMENTATION

An unoptimized naive software implementation was pro-
vided to serve as the functional reference for the contes-
tants’ optimized implementations. The reference implementa-
tion reads input files for the dataset D, and the vectors which
give the activation and deactivation time for each element. For
each time step, it then finds the skyline, records the number
of skyline entries found, and stores the resulting indices of the
skyline elements. This functionality is summarized by:

initialize data;
// begin timing here
for t = 0 to T {

for i = 0 to data_set_size-1 {
if (i valid at time t) {

for j = 0 to data_set_size-1 {
isDominated = 0;
if (j valid at time t) {

if (j dominates i) {
isDominated = 1
break

}
}

}
}
if (!isDominated)

add i to skyline at time t
}
numFound[t] = num. elements found at t

}
// end timing here
sort and output results;

The j dominates i function was provided based on
Definition 2.

Based on the problem definition, the order of the output
values does not matter. For convenience, the functional refer-
ence sorts them by index; this will allow an easy use of diff
to determine if two output files are equivalent. This sorting
was not considered part of the contest implementation (and its
runtime was not counted). Lastly, a Makefile was provided
to compile and run the software, and to compare the results to
a reference solution.

Datatype. Elements in D are given as unsigned integers.
The range of the input values is limited such that every input
element can be represented as a 16-bit unsigned value. The
final output values are the indices of the skyline entries of
D at each timestep (thus, unsigned integers between 0 and
n − 1). Designers were allowed to optimize the datatype as
appropriate. A solution is considered to be correct if all skyline
indices match. There was no constraint on the order that the
indices are produced during a given timestep.

Test Data. Three sets of data were provided to aid in val-
idation and development. Each set contains an m-dimensional
input dataset D, and the vectors which give the activation and
deactivation time for each element. Each set is accompanied
by a reference output that provides the sorted indices of the
skyline elements. Details of the test data are given in Table I.
All test data were generated synthetically to have the desired
size and characteristics.

IV. THE CONTEST

Participants were given one month to implement a solu-
tion using platforms such as FPGAs, GPUs, and CPUs. The
solutions were validated using the supplied reference datasets.
Performance was measured using the large dataset. The time
taken to initialize data and to sort and read the final result from
memory was excluded from the runtime measurement.

The submitted solutions were evaluated using two metrics:
pure performance and cost-adjusted performance. The pure-
performance metric was based solely on runtime, while the
cost-adjusted metric was defined as the product of runtime
and system cost. The system cost was determined based on
the lowest listed commercial price; if no price were available,
the system cost would be estimated by the judges. Contestants
were encouraged to include their own estimate of system cost
with their submissions.

V. RESULTS

In order to access the reference code and data, contestants
were asked to register by e-mail. Seven teams consisting of
members from eight countries registered, and full working
implementations were submitted by three teams. All three final
submissions targeted CPU implementation.

Tables II and III summarize the results for performance
and cost-adjusted performance, respectively. Note that some
teams reported the runtime of their implementation on multiple
processors; only the fastest or most cost-efficient solution
from each team is included in the tables. The names and full
affiliations of the participants of each of the three teams are
included at the end of the paper.

As shown in the tables, the University of Tokyo team was
the winner in both the pure performance and cost-normalized



TABLE I. TEST DATASET CHARACTERISTICS

Name Entries Dimensions Time Steps Max. Skyline Elem. Appx. Input Size Appx. Output Size

small 1, 000 4 109 34 8 KB 15 KB
medium 50, 000 5 10,998 310 500 KB 14 MB
large 800, 000 7 40,998 2008 11 MB 329 MB

TABLE II. RUNTIMES FOR THE LARGE DATASET.

Team Platform Runtime (sec.)

University of Tokyo Intel Core i7-4770K 0.407
IPM AMD Opteron 6386 SE 1.4
Team DanTa Intel Core 2 Duo P8400 517

TABLE III. COST-NORMALIZED RUNTIMES FOR THE LARGE DATASET.

Team Platform Cost (USD) Runtime×Cost

University of Tokyo Intel Core i7-4770K 305 124
IPM Intel Xeon X5650 80 280
Team DanTa Intel Core 2 Duo P8400 59 30477

performance categories. This team included a variety of algo-
rithmic and implementation-level optimizations to reach this
performance. A key optimization strategy employed was to
construct a tree structure capturing the dominance relationships
at each point; this required careful procedures to update the
tree as new data points become valid or invalid over time.
However, once the tree is constructed, the dynamic updates to
the database become relatively inexpensive. The University of
Tokyo team also employed SIMD instructions to speed up the
dominates function, and parallelized the algorithm across
four cores.

A second place award was given to the team from the
Institute for Research in Fundamental Sciences (IPM), Iran.
The IPM team also targeted multicore CPUs, and evaluated
their approach on a number of Intel and AMD processors.
They reached their highest performance numbers on the AMD
Opteron 6386 SE, a 16 core processor. The IPM team’s most
cost-efficient solution used the 6-core Intel Xeon X5650, which
was only 2.5 times slower than their Opteron implementation
in spite of its much lower cost. This team also optimized for the
dynamic nature of the data, also focusing on efficient insertion
and removal of points over time. In order to parallelize the
system, this implementation parallelized over time, partitioning
timesteps across the cores.

Congratulations to all of our participants. The first and
second place teams have contributed invited papers to these
proceedings detailing their techniques [12], [13].

VI. CONCLUSION

The 2015 MEMOCODE Design Contest targeted the prob-
lem of computing the continuous skyline of dynamic data.
Working solutions were submitted by three teams. The winning
teams performed effective optimizations involving algorithms,
data structures, and parallelism.

Although the submissions to this year’s contest focused
solely on CPU-based implementation, a number of recent
works have explored computing the skyline on GPU and
FPGA. For example, [14] shows how the dominance operator
can be computed in a branch-free manner to make it suitable

for GPU and [15] details a partitioning scheme providing fur-
ther improvements. Meanwhile, [16] presents a highly scalable
parallel FPGA technique for computing the skyline; the authors
later generalized this idea into a new computational structure
called a shifter list [17].

ACKNOWLEDGMENTS

The 2015 MEMOCODE Design Contest is sponsored by
Microsoft and Xilinx. We thank both sponsors for their sup-
port. Thanks to all of the contestants for their hard work and
we congratulate them on their excellent results. Thank you also
to Andreas Gerstlauer, Connie Heitmeyer, Elizabeth Leonard,
Yi Deng, and Jean-Pierre Talpin for their help in planning and
organizing this contest.

PARTICIPANTS

Thank you to all of the participants. The following teams
submitted complete solutions (presented in the same order as
Tables II and III):

• Kenichi Koizumi, Mary Inaba, Kei Hiraki
Graduate School of Information Science and Technol-
ogy, The University of Tokyo

• Ehsan Montahaie, Milad Ghafouri, Saied Rahmani,
Hanie Ghasemi, Farzad Sharif Bakhtiar, Rashid Za-
manshoar, Kianoush Jafari, Mohsen Gavahi, Reza
Mirzaei, Armin Ahmadzadeh, Saeid Gorgin
Institute for Research in Fundamental Sciences (IPM),
Iran

• Daniele Tajolini

REFERENCES

[1] P. Milder, “MEMOCODE 2014 design contest: k-nearest neighbors with
Mahalanobis distance metric,” in ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE), 2014.

[2] E. Nurvitadhi, “MEMOCODE 2013 Hardware/Software Co-design
Contest: Stereo Matching,” in IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), 2013.

[3] S. A. Edwards, “MEMOCODE 2012 Hardware/Software codesign con-
test: DNA sequence aligner,” in IEEE/ACM International Conference
on Formal Methods and Models for Codesign (MEMOCODE), 2012.

[4] D. Chiou, “MEMOCODE 2011 Hardware/Software CoDesign Contest:
NoC simulator,” in IEEE/ACM International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2011.

[5] M. Pellauer, A. Agarwal, A. Khan, M. C. N. Ng, M. Vijayaraghavan,
F. Brewer, and J. Emer, “Design Contest Overview: Combined Architec-
ture for Network Stream Categorization and Intrusion Detection (CAN-
SCID),” in IEEE/ACM International Conference on Formal Methods
and Models for Codesign (MEMOCODE), 2010.

[6] F. Brewer and J. C. Hoe, “2009 MEMOCODE Co-Design Contest,” in
IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE), 2009.

[7] P. Schaumont, K. Asanovic, and J. C. Hoe, “MEMOCODE 2008 Co-
Design Contest,” in ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2008.



[8] F. Brewer and J. Hoe, “MEMOCODE 2007 co-design contest,” in
IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE), 2007.

[9] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques.
Elsevier, 2011.

[10] S. Börzsöny, D. Kossmann, and K. Stocker, “The skyline operator,” in
Data Engineering, 17th International Conference on, 2001, pp. 421–
430.

[11] M. Morse, J. M. Patel, and W. I. Grosky, “Efficient continuous skyline
computation,” Information Sciences, vol. 177, no. 17, pp. 3411–3437,
2007.

[12] K. Koizumi, M. Inaba, and K. Hiraki, “Efficient implementation of
continuous skyline computation on a multi-core processor,” in ACM-
IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE), 2015.

[13] E. Montahaie, M. Ghafouri, S. Rahmani, H. Ghasemi, F. S. Bakhtiar,
R. Zamanshoar, K. Jafari, M. Gavahi, R. Mirzaei, A. Ahmadzadeh,

and S. Gorgin, “Efficient continuous skyline computation on multi-core
processors based on manhattan distance,” in ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEM-
OCODE), 2015.

[14] K. S. Bøgh, I. Assent, and M. Magnani, “Efficient GPU-based skyline
computation,” in Proceedings of the Ninth International Workshop on
Data Management on New Hardware, 2013, pp. 5:1–5:6.

[15] K. S. Bøgh, S. Chester, and I. Assent, “Work-efficient parallel skyline
computation for the GPU,” Proc. VLDB Endow., vol. 8, no. 9, pp. 962–
973, May 2015.

[16] L. Woods, G. Alonso, and J. Teubner, “Parallel computation of skyline
queries,” in IEEE Symposium on Field-Programmable Custom Comput-
ing Machines (FCCM), 2013.

[17] L. Woods, G. Alonso, S. Group, and C. Science, “Parallelizing data
processing on FPGAs with shifter lists,” vol. 8, no. 2, 2015.


