
MEMOCODE 2014 Design Contest: k-Nearest
Neighbors with Mahalanobis Distance Metric

Peter Milder
Department of Electrical and Computer Engineering

Stony Brook University
Stony Brook, NY 11794–2350
peter.milder@stonybrook.edu

Abstract—The MEMOCODE 2014 hardware/software co-
design contest problem is k-Nearest Neighbor search using the
Mahalanobis distance metric. Given a data set of points in multi-
dimensional space, the goal is to find the k points that are nearest
to any given point in that space (quantified with the given distance
metric). Contestants were given one month to develop a system
to perform the kNN search, aiming to maximize performance or
cost-adjusted performance. The two winning teams, which have
been invited to contribute papers describing their techniques,
combined algorithmic and implementation optimizations. The
pure-performance winners targeted the Convey HC-2ex hybrid
FPGA/multicore system, while the winners for cost-adjusted
performance targeted an Intel multicore.

I. INTRODUCTION

A yearly tradition since 2007, the MEMOCODE design
contest presents a problem and challenges participants from
around the world to develop effective hardware/software solu-
tions. Previous problems have included stereo matching [1],
DNA sequence alignment [2], NoC simulation [3], packet
inspection [4], rectangular-to-polar interpolation [5], sorting of
encrypted data [6], and matrix-matrix multiplication [7].

This year’s problem is to find, given a point in multidi-
mensional space, the k-nearest neighbors of that point in a
data set. k-nearest neighbors (kNN) [8] is frequently used in
pattern recognition and machine learning applications to find
how a newly observed datapoint relates to previously observed
ones. Given a set of points in a multidimensional feature space,
contestants must find the k nearest points to a given input
point. The Mahalanobis distance metric [9], used in biomedical
applications, allows quantification of the distance between two
points in a way that takes into account the covariance across
the dimensions of the feature space. The challenges of this
problem lie in the computation to be performed, efficient
access of data, and re-organization of the algorithm to allow
pre-processing of the data set.

II. PROBLEM

k-Nearest Neighbors is used for problems such as classifi-
cation (“Which observed class does a new data point resemble
most closely?”) and regression (“Given a new data point, what
was the average behavior of the k nearest previously observed
points?”). In both of these problems, it is necessary to find the
k points in a known data set which are closest to a given input
point. This year’s design contest focuses on this search process.
Participants are given a data set and an input set which each
contain a set of points in D dimensional space. The goal of the

Fig. 1. Example with uniform distribution, D = 2.

search is to find, for each point in the input set, the k nearest
points in the data set.

In order to quantify the distance between two points in
D dimensional space, a distance metric must be chosen.
To motivate this choice, we first consider examples in two
dimensions (i.e, D = 2). In Figure 1, the blue dots represent
all points of the data set, the red dot represents a particular
point we consider, and the two green dots (A and B) represent
two points from the input set. We would like to quantify
the distance from each of A and B to the red point. In this
example, the two dimensions of the data set are not correlated
and have equal variance, giving the blue cloud a roughly
circular shape. Given this data set and its distribution, the
Euclidean distance between two points provides a good metric
for the dissimilarity between them. Thus, we could calculate
that the distance from either green point to the red point is√
32 + 32 =

√
18 ≈ 4.2426, and we can conclude that A and

B are “equally similar” to the red point.

However, many data sets exhibit correlation and differing
levels of variance among their dimensions. For example, Fig-
ure 2 shows an example where there is a correlation between
the two dimensions (giving the area of blue points a generally
diagonal shape), and the variance is not uniform. Each of the
green points still has the same Euclidean distance from the red
point as in the previous example. However now we can see
that in the context of the data set, B can be considered to be
“more similar” to the red point than A is.

Fig. 2. Example with correlated distribution, D = 2.

The Mahalanobis distance metric takes this into account
by measuring the distance between two points relative to the
covariance of the data set. Let S represent the covariance
matrix of the data set (or an estimate of it). (For this two-
dimensional example, S is a 2× 2 matrix.) The Mahalanobis
distance between two points (represented by D-dimensional
column vectors ~x and ~y) is computed according to

dist(~x, ~y) =
√
(~x− ~y)TS−1(~x− ~y).

For the example shown in Figure 2,

S =

[
0.96 0.69
0.69 0.94

]
and S−1 =

[
2.20 −1.61
−1.61 2.25

]
.

So,

dist

([
−3
3

]
,

[
0
0

])
= 8.315

dist

([
3
3

]
,

[
0
0

])
= 3.318

We see that using this distance metric, point B is much closer
to the origin than point A is. To avoid the square root operator,
we will use the squared Mahalanobis distance as a distance
metric, giving:

distSq(~x, ~y) = (~x− ~y)TS−1(~x− ~y) (1)

Problem specification. Given the following:

• a data set C (analogous to the blue dots in the example
figures above), comprised of a number of points in 32-
dimensional space (i.e., D = 32),

• a 32×32 matrix S−1, where S is the covariance matrix
of C, and

• an input set N comprised of a given number of points
in 32-dimensional space,

the system must, for each point in N , compute the k = 10
nearest neighbors in C, sorted from lowest distance to tenth-
lowest distance, and report the computed distance values. The
timed portion of the implementation must start and end with
all data in main system memory.

All initial input values are scaled so they can be repre-
sented as 12-bit two’s complement integers. As computation
progresses, the maximum data size will grow; solutions will
be considered correct if they deviate from exact solutions only
within the two least significant bits.

III. FUNCTIONAL REFERENCE IMPLEMENTATION AND
SUPPLIED DATA SETS

An unoptimized software implementation was provided to
serve as the functional reference for the contestants’ optimized
implementations. The reference implementation reads input
files for the data set C, input set N , and inverse covariance
matrix S−1. It then performs the kNN search and writes the re-
sulting indices and distances to output files. This functionality
is summarized as:

initialize data;
// begin timing here
for i = 0 to input_set_size {

for j = 0 to data_set_size {
d = distSq(inputSet[i], dataSet[j],

inverseS);
updateKNearest(d, i, j);

}
}
// end timing here
output results;

Also included was software to compare the computed
output with a reference solution, and verify that the results
are within the acceptable tolerance.

Three data sets were provided to aid in validation and
development. Each set contains a comparison data set C, an
inverse covariance matrix S−1, and a set of input vectors N .
Each set is accompanied by reference solutions, which provide
correct nearest neighbor and distance results. The three data
sets are named small, medium, and large:

• Small: C: 1,000 elements; N : 10 elements

• Medium: C: 10,000 elements; N : 100 elements

• Large: C: 10,000,000 elements; N : 1,000 elements

In all cases S−1 is a 32 × 32 matrix, D = 32, and k = 10.
Assuming 12 bits per input number, this means the large data
set’s inputs require approximately 480 MB of memory.

All data were generated synthetically to have the desired
size and covariance characteristics.

IV. THE CONTEST

Participants were given a month to implement a solu-
tion using platforms such as FPGAs, GPUs, and CPUs. The
solutions were validated using the supplied reference data
sets. Performance was measured using the large data set.
The time taken to initialize data and read out the result was
excluded from the runtime measurement. Additionally, any
pre-processing of the data set C and inverse covariance matrix
S−1 was allowed as long as the preprocessing did not include
the input set N ; this pre-processing was not included in the
runtime measurement.

TABLE I. RUNTIMES FOR THE LARGE DATA SET.

Team Platform Runtime (sec.)

Iowa State, USA Convey HC-2ex 1
IPM Multi-Core 1, Iran Intel Xeon E5-2650 15
IPM Multi-Core 2, Iran Intel Xeon E5-2650 22
IPM Many-Core, Iran Intel Xeon Phi 5110P 54

TABLE II. COST-NORMALIZED RUNTIMES FOR THE LARGE DATA SET.

Team Platform Cost (USD) Runtime×Cost

IPM Multi-Core 1, Iran Intel Xeon X5650 130 4550
IPM Multi-Core 2, Iran Intel Xeon X5650 130 9360
IPM Many-Core, Iran NVIDIA GTX 480 219 25185
Iowa State, USA Convey HC-2ex 100000 107000

The contest included two categories of awards: pure perfor-
mance and cost-adjusted performance. The pure-performance
award was based solely on runtime, while the cost-adjusted
award was measured as of the product of runtime and system
cost. The system cost was determined based on the lowest
listed price; if no price is available, the system cost would
be estimated by the judges. Contestants were encouraged to
include an estimate of system cost with their submissions.

V. RESULTS

Approximately ten institutions began the contest. Full
working implementations were submitted by four teams from
two different institutions. A variety of platforms were targeted,
including FPGAs, GPUs, and CPUs.

All of the submissions employed a form of pre-processing
that was able to reduce the amount of computation and
communication required. As one example, the Iowa State
team, which used the Convey HC2-ex hybrid FPGA and CPU
system, restructured (1) as

(~x− ~y)T (S−1x− S−1y),

where S−1y can be precomputed once for the entire data set,
S−1x is computed on the CPU, and the remaining operations
are computed on the FPGA. Others employed similar tech-
niques, optimized for their platforms.

Tables I and II summarize the results for performance
and cost-adjusted performance, respectively. Note that some
teams reported the runtime of their implementation on multiple
processors; only the fastest or most cost-efficient solution from
each team is included in the tables. The cost of the Convey HC-
2ex was estimated by the contestants at $100,000; the cost of
Intel and NVIDIA systems was based on the lowest published
prices found online.

As shown in the tables, the winner for the fastest per-
formance was Iowa State University’s implementation on the
Convey HC-2ex. The Iowa State team employed efficient pre-
processing and utilized an extremely parallel systolic array
architecture, employing four FPGAs. The team reports that
the limiting factor of their implementation was the number of
DSP units available on the FPGAs.

The winner for best cost-adjusted performance was the IPM
Multi-Core 1 team from the Institute for Research in Funda-
mental Sciences (IPM), Iran, whose software implementation
on an Intel Xeon X5650 CPU exhibited the lowest runtime-
cost product. The IPM Multi-Core 1 team employed another
form of pre-processing, and implemented a software solution
on a variety of platforms. They reported runtime results on four
Intel CPUs; the fastest runtime was obtained on the Intel Xeon
E5-2650, but the lower cost of the Intel Xeon X5650 made it
a more cost-effective solution. Also of note is the IPM Many-
Core team, who used similar pre-processing techniques and
targeted their implementation for the NVIDIA GTX-480 GPU
and the Intel Xeon Phi 5110P many-core processor.

VI. CONCLUSION

The 2014 MEMOCODE Design Contest received submis-
sions using FPGAs, GPUs and CPUs. Working solutions were
submitted by four teams at two institutions. The winning
teams made effective use of pre-processing and adapted the
algorithms to their intended platforms.

ACKNOWLEDGMENTS

I would like to thank all of the contestants for their hard
work and congratulate them on their excellent results.

Thank you also to James Hoe, Sandeep Shukla, and Jean-
Pierre Talpin for their help in planning and organizing this
contest.

REFERENCES

[1] E. Nurvitadhi, “MEMOCODE 2013 Hardware/Software Co-design Con-
test: Stereo Matching,” in IEEE/ACM International Conference on For-
mal Methods and Models for Codesign (MEMOCODE), 2013.

[2] S. A. Edwards, “MEMOCODE 2012 Hardware/Software codesign con-
test: DNA sequence aligner,” in IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), 2012.

[3] D. Chiou, “MEMOCODE 2011 Hardware/Software CoDesign Contest:
NoC simulator,” in IEEE/ACM International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2011.

[4] M. Pellauer, A. Agarwal, A. Khan, M. C. N. Ng, M. Vijayaraghavan,
F. Brewer, and J. Emer, “Design Contest Overview: Combined Architec-
ture for Network Stream Categorization and Intrusion Detection (CAN-
SCID),” in IEEE/ACM International Conference on Formal Methods and
Models for Codesign (MEMOCODE), 2010.

[5] F. Brewer and J. C. Hoe, “2009 MEMOCODE Co-Design Contest,” in
IEEE/ACM International Conference on Formal Methods and Models for
Codesign (MEMOCODE), 2009.

[6] P. Schaumont, K. Asanovic, and J. C. Hoe, “MEMOCODE 2008 Co-
Design Contest,” in ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2008.

[7] F. Brewer and J. Hoe, “MEMOCODE 2007 co-design contest,” in
IEEE/ACM International Conference on Formal Methods and Models
for Codesign (MEMOCODE), 2007.

[8] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theor., vol. 13, no. 1, pp. 21–27, Sep. 1967.

[9] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-
ings of the National Institute of Sciences of India, vol. 2, no. 1, 1936.

